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ABSTRACT
Community detection on graph structures is an important problem
in network science and has many crucial applications in numerous
fields such as sociology and epidemiology. Real world networks are
dynamic, with nodes and edges appearing and disappearing across
a timescale. However, common community detection algorithms ag-
gregate these dynamic structures to static graphs. In doing so, vital
temporal information is lost. In this project, I propose a clustering
algorithm for temporal graphs using short random walk that finds
persistent communities while able to preserve important temporal
information.

CCS CONCEPTS
• Networks→ Network dynamics; • Theory of computation
→ Random walks and Markov chains; • Applied computing
→ Sociology.
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1 INTRODUCTION AND MOTIVATION
In recent years, there has been a wide interest in studying and ex-
tracting information from temporal networks, such as the evolution
of friendship networks and how infectious diseases are spread. From
friendship network to web graphs, to the spreading of infectious
diseases and information, real life networks are rarely static. Yet
most currently existing community detection algorithms require a
network to be static or aggregated to a static network. Few cluster-
ing algorithms are available for dynamic networks.[6] Inspired by
theWalkTrap algorithm proposed by Pons and Lapaty[23], I explore
the behaviour of a random walker on dynamic graphs and propose
a clustering algorithm for finding persistent communities while re-
taining important temporal information in dynamic networks. This
project is organized as follows: the next section outlines some of
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the previous research done in the areas of community detection and
random walk. Section 3 recalls the fundamentals of random walks
and temporal graphs, highlighting some important definitions and
properties. Section 4 describes the details of the RWTC algorithm.
Section 5 provides the setup of the experiments to be run and a
brief description of the datasets used in the experiments. Section 6
details and interprets the results of experiments performed using
different algorithms on the same datasets. Section 7 discusses the
advantages and disadvantages of the RWTC algorithm, as well as
future work to be done with RWTC. Lastly, section 10 summarizes
the findings of this project and discusses further work that could
be done in this area.

2 RELATEDWORKS
Graph clustering is a widely studied problem with many previous
literature[31]. Most graph clustering algorithms are defined to clus-
ter a given graph into sets of closely connected nodes, commonly
by maximizing a measure called modularity. [18], a quality function
that measures how well a partition of a network is. These modular-
ity maximizing methods include the Kernighan–Lin algorithm[10],
simple node-moving algorithm[16][18] and spectral modularity max-
imization[16].Modularity maximization algorithms such as Louvain
algorithm[3] are very popular, but this algorithm only applies to
static graphs. Modularity has been extended for temporal graphs
where nodes or edges change over time. These methods often as-
sume the clusters also change over time and try to detect their
evolution. In this work, we assume that the underlying clusters are
persistent and will use the temporal information which is often
present to better discover them. This is in between the well studied
static community detection and dynamic community detection. The
main hypothesis is that by incorporating the temporal information,
we will be able to recover the static clusters more precisely. It is
worth noting that there are recent efforts to use modularity maxi-
mization as a mean to perform community detection on temporal
brain graphs by Garcia et al. [6]. Additionally, Mucha et al. [14]
proposed a modularity optimization algorithm to detect temporal
clusters in the US congress from the years 1789 to 2008.

Other temporal graph clustering approaches include aggregat-
ing temporal graphs into static graphs or performing community
detection on given snapshots[9] to observe the evolution of clus-
ters. However, by aggregating dynamic graphs into static graphs,
important temporal information would be lost. On the other hand,
performing community detection on individual snapshots fail to
discover clusters that are persistent overtime. In this project, I will
investigate the clusters that are consistent over time while retaining
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temporal information.

There are some existing method of persistent community detec-
tion. These methods often involve generalization of popular static
clustering algorithms. For example, Jutla et al. [13][14] proposed a
genLouvain, a generalized Louvain algorithm for persistent com-
munity detection on multilayer networks. Similarly, the Louvain
algorithm can be applied on the supra-matrix representation of
a multilayer network to find persistent communities. [26] Addi-
tionally, Li et al. [11] introduced the (𝜃, 𝜏)-persistent 𝑘-core model
which includes a temporal graph reduction algorithm to prune the
original temporal graph to identify the (𝜃, 𝜏)-persistent 𝑘-cores
more efficiently. Other approaches to persistent community detec-
tion include statistical model-based algorithm such as the Persistent
Community Detection (PCD) algorithm [12] proposed by Liu et al.
In this project, I propose a random walk based algorithm.

Random walk, and Marchov process, itself is a widely studied
subject in mathematics. Previous work have been done on deriving
properties of random walks on temporal graphs and performing
numerical simulations [27][2][21][28].

In addition, Rosvall et al. and Pons and Latapsy introduced the
InfoMap[25] and Walktrap[22] algorithms respectively. Both are
random walk based graph clustering algorithms. The former uti-
lizes concepts from information theory while the latter uses the
characteristics of short random walks. TheWalktrap algorithm is
a major influence for this project. It utilizes the intuition of ran-
dom walks on a graph tend to get "trapped" into densely connected
parts corresponding to communities. Therefore, two nodes from the
same community tend to have an approximately equal probability
of reaching all other nodes in a fixed number of stamps. Thus, a
distance corresponding to this difference of probability is used to
determine the similarity of two nodes and hierarchical clustering
is performed on this distance.

According to an evaluation done by Orman et al. [19], random
walk based algorithms performed better than other clustering algo-
rithms in general. However, both InfoMap andWalktrap are only
available for use on static graphs, therefore, this project aims to
bridge the gap between random walk based clustering algorithms
and temporal graph clustering.

3 PROBLEM DEFINITIONS
In this section, I will recall important definitions of random walk
and temporal graph, define notations used in this project and pro-
vide background information needed for the clustering algorithm
proposed.

3.1 Temporal Graphs and RandomWalk
The following definitions are based on the definitions outlined in
[28] and [22].

Definition 3.1. Temporal Graph. Let 𝐺 = (𝐺1,𝐺2, ...,𝐺𝑇 ) be a
temporal graph of a sequence of snapshots where 𝐺𝑡 is a snapshot
of 𝐺 at timestamp 𝑡 , with 𝑡 = 1, ...,𝑇 . Each 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) consists of
a set of nodes 𝑉𝑡 and of edges 𝐸𝑡 that are present at that timestep.

Let us consider an undirected, unweighted static graph Γ =

(𝑉 , 𝐸) with adjacency matrix 𝐴, where 𝐴𝑖 𝑗 = 1 if an edge 𝑒𝑖 𝑗 exists
between 𝑖 and 𝑗 , 0 otherwise. A random walk process is defined
by a walker that, located on a given vertex 𝑖 at timestep 𝑡 , chooses
uniformly at random to move to one of its neighbours 𝑗 at the next
timestep[28]. At each timestep, this transition probability is defined
as:

𝑃𝑖 𝑗 =
𝐴𝑖 𝑗

𝑑 (𝑖) (1)

, where 𝑑 (𝑖) =
𝑛∑
𝑗=1

𝐴𝑖 𝑗 . Hence, the transition probability for un-

weighted graph is

𝑃𝑖 𝑗 =
1

𝑑 (𝑖)
In the case of weighted graphs, the adjacency matrix is replaced
with the weight matrix𝑤 . Thus the transition probability becomes

𝑃𝑖 𝑗 =
𝑤𝑖 𝑗

𝑘 (𝑖) (2)

, where 𝑘 (𝑖) =
𝑛∑
𝑗=1

𝑤𝑖 𝑗 . 𝑃 is defined to be the probability transi-

tion matrix for the random walk process. Alternatively, 𝑃 can be
obtained from the degree matrix 𝐷

𝐷𝑖 𝑗 =

{
𝑑 (𝑖) 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and the adjacency matrix 𝐴,

𝑃 = 𝐷−1𝐴 (3)

Similarly, in temporal graphs, the probability transition matrix is de-
fined to be 𝑃 = (𝑝1, ..., 𝑝𝑛), with snapshots 𝑝𝑡 = 𝐷−1

𝑡 𝐴𝑡 , 1 ≤ 𝑡 ≤ 𝑇

corresponding to the probability transition matrix at timestep 𝑡 .

Likewise, in weighted graphs, the probability transition matrix 𝑃

can be obtained from the weight matrix𝑊

𝑊𝑖 𝑗 =

{
𝑘 (𝑖) 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and the adjacency matrix A,

𝑃 =𝑊 −1𝐴 (4)

In temporal graphs, the probability transitionmatrices 𝑃 = (𝑝1, ..., 𝑝𝑛)
becomes 𝑝𝑡 =𝑊 −1

𝑡 𝐴𝑡 , 1 ≤ 𝑡 ≤ 𝑇 corresponding to the probability
transition matrix at timestep 𝑡 .

In this project, I will focus on undirected graphs, both weighted
and unweighted.
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Figure 1: Flowchart detailing the sequence of RWTC algorithm: (a) a random walker walking on a temporal graph with edges
appearing and dissapearing, (b) the reachabilitymatrix 𝑅 is formed, (c) hierarchical clustering is performed on the reachability
matrix, (d) two clusters are formed by cutting the dendrogram at the point where multislice modularity is maximized

4 METHODOLOGY
In this section, I outline the method used for community detection
in this project. RWTC investigates the "reachability" of node 𝑗 from
a random walker starting at node 𝑖 for every pair of nodes (𝑖, 𝑗).
Since communities in graph can be seen as each community having
more connections within the community than with the rest of the
graph[24], each node is more likely to be reachable by nodes within
its own community before being reachable by nodes outside in
short random walks. The main intuition is that a random walker
starting from an arbitrary node will visit nodes from the same com-
munity more often than nodes in a different community. In this
project, simulations are used to determine the reachability between
nodes.

4.1 Setup and Initialization
For the purpose of this project, it is assumed that the walker walks
at the same speed as the rate of the temporal graph evolves. How-
ever, it is possible for a random walker to walk faster or slower
than the rate of the graph evolution, or at an arbitrary rate.

In particular, three different adjacency matrices are tested for the
Congress co-sponsorship network in this project, (1) un-normalizaed
adjacency matrix tabulating the number of times each pair of legis-
lators co-sponsored bills,

𝐴𝑖 𝑗𝑡 =
∑
𝑘

𝛾𝑖 𝑗𝑘

where 𝛾𝑖 𝑗𝑘 = 1 if legislator 𝑖 and 𝑗 cosponsored bill 𝑘 at Congress 𝑡 ,
(2) adjacency matrix normalized by the sum of the total number of
bills a pair of legislators co-sponsored,

𝐴𝑖 𝑗𝑡 =
1

𝑏𝑖𝑡 + 𝑏 𝑗𝑡

∑
𝑘

𝛾𝑖 𝑗𝑘

where𝑏𝑖𝑡 is the number of bills legislator 𝑖 co-sponsored at Congress
𝑡 , and (3) adjacency matrix normalized by the product of the total
number of bills a pair of legislators co-sponsored,

𝐴𝑖 𝑗𝑡 =
1

𝑏𝑖𝑡 ¤𝑏 𝑗𝑡

∑
𝑘

𝛾𝑖 𝑗𝑘

where 𝑏𝑖𝑡 is the number of bills legislator 𝑖 co-sponsored at Con-
gress 𝑡 .

4.2 Computing Reachability
The walker first starts at an arbitrary node 𝑖 at time 𝑡 = 0. The
walker then chooses uniformly at random to move to any of its
neighbours, or stay at its current position, at the next timestep. This
process is then repeated for a fixed number of steps 𝑠 . Each visit
to node 𝑗 is recorded in the 𝑛 x 𝑛 reachability matrix 𝑅. Each 𝑅𝑖 𝑗
records the number of visits to node 𝑗 a random walker starting
from node 𝑖 made. This process is repeated a fixed number of time.

𝑅𝑖 𝑗 =
∑
𝑘

𝛾𝑖 𝑗𝑘

where 𝛾𝑖 𝑗𝑘 = 1 if a walker starting from node 𝑖 reaches node 𝑗 at
walk 𝑘 , 0 otherwise. To simplify calculations, the matrix is made
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to be symmetrical, so a visit to node 𝑗 from node 𝑖 would also be
recorded as a visit from node 𝑖 to node 𝑗 . Therefore making

𝑅𝑖 𝑗 = 𝑅 𝑗𝑖

Because the graph is evolving, it is necessary to consider all cases
where the random walker starts at each timestep. Otherwise, vital
information regarding the interactions might be lost. For example,
nodes that only appear later in the graph will not be captured if
the walker always starts at 𝑡 = 0. Thus the reachability matrix then
becomes

𝑅𝑖 𝑗 =
∑
𝑡

∑
𝑘

𝛾𝑖 𝑗𝑘𝑡

where 𝛾𝑖 𝑗𝑘𝑡 = 1 if a walker starting from node 𝑖 at time 𝑡 reaches
node 𝑗 at walk 𝑘 , 0 otherwise.

4.3 Clustering
After the reachability matrix is computed, the Congress Co- spon-
sorship network is then normalized in two ways, (1) by the sum of
the number of times each legislators is in Congress, the reachability
matrix becomes

𝑅𝑖 𝑗 =
1

𝑏𝑖 + 𝑏 𝑗

∑
𝑡

∑
𝑘

𝛾𝑖 𝑗𝑘𝑡

where 𝑏𝑖 is the number of times legislator 𝑖 in Congress, and (2) the
product of the number of times each legislators is in Congress and
the reachability matrix becomes

𝑅𝑖 𝑗 =
1

𝑏𝑖 ¤𝑏 𝑗

∑
𝑡

∑
𝑘

𝛾𝑖 𝑗𝑘𝑡

where 𝑏𝑖 is the number of times legislator 𝑖 in Congress.

Hierarchical clustering will then be performed on the noramlized
and un-normalized reachability matrices. The reachability metric
is converted to a distance matrix 𝐷 by taking its reciprocal.

𝐷𝑖 𝑗 =
1
𝑅𝑖 𝑗

for all nodes 𝑖, 𝑗 . After the full dendrogram is formed, the quality
of the clusters is evaluated by computing the temporal modularity
[14] [15],

𝑄 =
1
2𝜇

∑
𝑖 𝑗𝑙𝑟

{(
𝐴𝑖 𝑗𝑙 − 𝛾𝑙𝑃𝑖 𝑗𝑙

)
𝛿𝑙𝑟 + 𝛿𝑖 𝑗𝐶 𝑗𝑙𝑟

}
𝛿
(
𝑔𝑖𝑙 , 𝑔 𝑗𝑟

)
(5)

where
• 𝐴𝑖 𝑗𝑙 is the adjacency matrix 𝐴 for node 𝑖 and 𝑗 at time 𝑙 ,
• 𝛾𝑙 is the resolution parameter for module size at time 𝑙 (de-
fault 𝛾𝑙 = 1),

• 𝑃𝑖 𝑗𝑙 =
𝑘𝑖𝑙𝑘 𝑗𝑙

2𝑚𝑙
, 𝑘𝑖𝑙 =

∑
𝑗
𝐴𝑖 𝑗𝑙 is the null model adjacency matrix

at time 𝑙 ,𝑚𝑙 =
∑
𝑖 𝑗
𝐴𝑖 𝑗𝑙 is the total number of edges at time 𝑙 ,

• 𝐶 𝑗𝑙𝑟 is the resolution parameter for module dynamics that
takes binary values {0, 𝜔} indicating the absence (0) or pres-
ence (𝜔) of links between timestamps

• 𝑔𝑖𝑙 is the community of node 𝑖 at timestamp 𝑙

• 𝛿 is the Kronecker delta function (𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 , 0 otherwise)
• 2𝜇 =

∑
𝑖𝑙

(𝑘𝑖𝑙 + 𝑐𝑖𝑙 ), measures the strengths of each node indi-

vidually in each timestamp by 𝑘𝑖𝑙 and across timestamps by
𝑐𝑖𝑙 =

∑
𝑟
𝐶𝑖𝑙𝑟

A more detailed discussion of the derivation of the temporal
modularity and the effects of changing the parameters 𝛾𝑙 and 𝜔

can be found in [14] and [15]. The best partition with the maximal
modularity is chosen to be the clusters returned by the algorithm.

5 EXPERIMENT SETUP
In the section, I give a brief description of the three datasets exam-
ined and the outline the experiments performed.

5.1 Dataset Descriptions
This project examines 3 datasets, (1) the primary school temporal
network data [29][7], a un-weighted network, (2) the US Senate
Co-sponsorship network, a weighted network, and (3) the US Senate
Voting Similarity Nework, a weighted network of over 10000 nodes
across 110 timesteps.

5.1.1 Primary School Contact Network. This dataset contains a
temporal contact network between 242 students and teachers in 5
grades and 10 classes over the course of 2 school days. It was col-
lected using RFID proximity-sensing devices worn by participants
to record their interactions in 20s intervals.

𝐴𝑖 𝑗𝑡 =

{
1 if student 𝑖, 𝑗 interacted at time 𝑡
0 otherwise

The dataset is undirected, unweighted and was originally collected
by Stehlé et al.[29] to study how infecious diseases spread within
a school setting. In this dataset, the class to which each student
belongs is used as the ground truth.

5.1.2 Legislative Co-Sponsorship Network. The Legislative Co- spon-
sorship network dataset [29] contains a temporal network of the
number of times 225 US senators co-sponsored pieces of legislature
across 12 Congresses. Each congress is made up of the House of
Commons and the Senate. Compared to other social networks, the
co-soponsorship network is much more densely connected. The
the average distances for both the House and Senate across all
Congresses are quite short, ranging from 1.58 to 1.95 for the House
and 1.17 to 1.51 for the Senate compared to 4.0 for scientific collab-
oration network.[17] In the House of Commons, majority of the
legislators receive co-sponsorships from 25% of the their fellow
legislators while the majority of Senators receives co-sponsorships
from 75% of the other Senators, possibly due to its smaller size and
the tendency for Senators to be more skilled at making connections.
In this dataset, the party affiliation of each legislator is used as the
ground truth. Additionally, clusters found in the co-sponsorship
datset is also compared to the geographic region corresponding to
each lesgislator.
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5.1.3 US Senate Voting Similarity Network. The US Senate voting
similarity network[30], generated from the House and Senate roll-
call data from Voteview.com [1], measures the similarity in voting
between individual Senators across 110 2-year Congress sessions.
The similarity in voting between each pair of Senators in a given
Congress is described in the adjacency matrix, each

𝐴𝑖 𝑗 =
1
𝑏𝑖 𝑗

∑
𝑘

𝛾𝑖 𝑗𝑘

where 𝛾𝑖 𝑗𝑘 equals 1 if Senators 𝑖 and 𝑗 voted the same on bill 𝑘
and 0 otherwise, and 𝑏𝑖 𝑗 is the total number of bills on which both
legislators voted. In this dataset, the party affiliation of each Senator
is used as the ground truth. However, this dataset is quite incom-
plete and party information of 20% of Senators are missing. When
computing the accuracy of the clustering results, nodes that are
missing ground truth are removed.

5.2 Baseline
The quality of the RWTC algorithm will be evaluated against the
following baseline clustering algorithms,

• Clauset-Newman-Moore greedy modularity maximization
algorithm as static graph [5]

• Louvain algorithm as static graph [3]
using metrics such as NMI and ARI. For the purpose of these ex-
periments, the class in which each student belongs is to be treated
as the ground truth for the primary school dataset and party affil-
iation for the co-sponsorhsip and voting similarity datasets. The
greedy modularity maximization algorithm and Louvain algorithm
are computed on a static graph formed by aggregating the temporal
graph at each timestamp.

For the primary school network, each short random walk is of
length 5 and the parameters 𝛾𝑙 = 1 and 𝜔 = 1 are used. For the co-
sponsorship network, 𝛾𝑙 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
and 𝜔 = {0, 0.1, 0.5, 1} are used and only the highest score is re-
ported. Additionally, for all networks, 𝐶 𝑗𝑙𝑟 = 𝜔 for all timesteps 𝑟
where 𝑟 = 𝑙 + 1, 0 otherwise, as it is impossible to travel back in
time nor is it possible to skip through timesteps. The entire random
walk process is repeated 100 times.

5.3 Normalizations
The RWTC will be performed on the two normalized adjacency
matrices and the un-noramlized adjacency matrix. In addition, the
generated reachability matrix will be normalized as described in
Section 4.3. Results from these noramlizations will be compared
against each other and the un-noramlized matrices to determine
the best suited configurations.

5.4 Different Clustering Algorithms on the
RWTC Distance Matrix

Finally, clustering results of hierachical clustering is compared with
those of k-medoid clustering and agglomerative complete linkage
clustering.

6 RESULTS
In this section, results from the above mentioned experiments are
presented. Certain clustering algorithms requires setting various
parameters, only the highest score of from the tested combination
of parameters is shown.

6.1 Performance of the RWTC Algorithm
The resulting communities detected by random walk temporal clus-
tering, Clauset-Newman-Moore greedy modularity maximization
and the Louvain algorithm are evaluated using Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI). [20]

Additionally, a number of normalizations and different configu-
rations of the RWTC algorithm are also evaluated: (1) normalization
on the adjacency matrix, (2) normalization on the reachability ma-
trix, and (3) clustering step of RWTC compared to agglomerative
clustering and k-medoid clustering.

Shown in Table 1, the RWTC algorithm has outperforms all static
clustering algorithms, such as the greedy modularity maximiza-
tion algorithm and the louvain algorithm on the primary school
contact network. On the Congress bill Co-sponsorship network,
however, the advantage of RWTC is less obvious. Although the
performance of the RWTC algorithm is generally on par with the
hightest performing clustering algorithms in terms of NMI and ARI.
Due the highly collaborative nature of the co-sponsorship network,
none of the evaluated perform well in the task of uncovering party
information in this network. Because of the size of the voting sim-
ilarity network, only static clustering methods and RWTC with
agglomerative and k-medoid clustering are performed.

In an attempt to further understand the community structure
in the co-sponsorship network, the clustering results of the co-
sponsorship network is compared to the geographic region of the
riding of each legislator.

Comparing the clusters found from RWTC to the geographic
region of each legislator, shown in Table 2, shows a lower accuracy.
This suggests that party affiliation is still a better indicator of legis-
lator co-sponsorship.

6.2 Normalization
In these sets of experiments, normalizations of the adjacency and
reachability matrices of the co-sponsorship network are evaluated
against the ground truth of this network. Silhouette score is used to
determine how well each of these normalized and un-normalized
matrices correspond to the ground truth.

Shown in Table 3, the adjacency matrix normalized by the prod-
uct of the number of co-sponsored bills is more similar to the
ground truth than the un-normalized adjacency matrix. Similarily,
the reachability matrix normalized by the product of the number of
times in congress is more similar to the un-normalized reachability
matrix. However, likely to due the fact that the co-sponsorship
network is more densely connected than other social networks,
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Dataset Normalization* Clustering Method Evaluation
Adj. Reachability NMI ARI no. clusters

Primary School contact
None None RWTC 0.8316 0.6991 8
None — Greedy modularity maximization 0.6582 0.1614 3
None — Louvain 0.8115 0.5732 6

Co-sponsorship

None None RWTC 0.3325 0.1046 56
None sum RWTC 0.2802 0.0893 38
None prod RWTC 0.2570 0.1158 237
sum None RWTC 0.3505 0.1184 51
prod None RWTC 0.2955 0.1075 50
None None RWTC + agglomerative 0.0912 0.0194 4
None None RWTC + k-medoid 0.0388 0.0158 3
None sum RWTC + agglomerative 0.0984 0.0159 4
None sum RWTC + k-medoid 0.0445 0.0163 4
None prod RWTC + agglomerative 0.0953 0.0269 4
None prod RWTC + k-medoid 0.0274 0.0183 4
None — Greedy modularity maximization 0.0 0.0 1
None — Louvain 0.0025 -0.0013 2
sum — Greedy modularity maximization 0.3658 -7.9364E-5 224
sum — Louvain 0.0025 -0.0014 3
prod — Greedy modularity maximization 0.3687 0.0 225
prod — Louvain 0.1586 0.1178 3

Voting Similarity None None RWTC + agglomerative 0.0177 0.0003 2
None None RWTC + k-medoid 0.0330 0.0246 43
None — Greedy modularity maximization 0.0542 -0.0403 2
None — Louvain 0.1601 0.0311 6

Table 1: Results from experiments. *prod in adj. indicates normalization of the adjacencymatrix by the product of the number
of times each pair of legislator co-sponsored bills, and sum indicates normalization by the sum of the number of times each
pair of legislator co-sponsored bills. Prod in reachability indicates a noramlization of the reachability matrix by the product
of the number of Congress sessions each legislator is present and sum indicates a normalization by the sum of the number of
Congress sessions.

Normalization* Clustering Method Evaluation
Adj. Reachability NMI ARI no. clusters

None sum RWTC 0.2065 0.0050 38
None prod RWTC 0.1528 0.0089 20

Table 2: Results from using geographic region as the ground
truth for Legislative co-sponsorhip network

none of these matrices are highly similar to the ground truth.

As previous results suggest, Table 4 confirms that both adjacency
and reachability matrices are more similar to the party affiliations
than to the geographic regions of each legislator indicating that
party affiliation is a better indicator of bill co-sponsorship than
geographic locations.

Normalization Silhouette Score**

adjacency
None -0.1262
Sum -0.1247
Prod 0.0438

reachability
None -0.0624
Sum -0.5641
Prod -0.0513

Table 3: Silhouette score of normalized and non-normalized
matrices. **Silhouette score for reachabilitymatrices are cal-
culated for the all randomwalk step sizes, only the the high-
est score is shown. the adjacency matrices are divided by
the sum and product of the number of congress sessions
each pairs of legislators are present, only the highest score
is shown.
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Normalization Silhouette Score**

adjacency
None -0.9421
Sum -0.9409
Prod -0.2888

reachability
None -0.0624
Sum -0.5641
Prod -0.8867

Table 4: Silhouette score of normalized and non-normalized
matrices compared to geographic region.

7 DISCUSSION
The RWTC algorithm works very well on the primary school con-
tact network where the partition in the nodes are clear. It has out-
performed all static community detection algorithms tested. This
confirms the earlier hypothesis that aggregating dynamics graphs
into static graphs results in a loss of temporal information vital to
detecting persistent communities. However, in the co-sponsorship
and voting similarity network where the partition of nodes are
less clear, the advantage of preserving temporal information of
networks is less apparent. To further investing the advantages and
disadvantages of the RWTC algorithm, future work can include
experimenting on real world networks that have good community
structures and on benchmark graphs.

7.1 Temporal Walktrap Algorithm
One of the influences of this project is the Walktrap algorithm pro-
posed by Pons and Lapaty. The Walktrap algorithm uses a distance
that measures how likely a random walker starting from node 𝑖
will end up in 𝑗 at a random walk of a given length. The main idea
of this project can be extended to compute temporal communities
in the style of theWalktrap algorithm. Instead of performing ran-
dom walk simulations, one can perform hierarchical clustering on
a temporal probability matrix [4]

𝑃 = 𝑝0 · 𝑝1 · 𝑝2 · ... · 𝑝𝑘 (6)

where 𝑃𝑡 is the probability transition matrix at each timestamp.
With a similar intuition applied, a random walker will more likely
to explore its own neighbourhood before moving to another, thus
resulting in a higher probability in the temporal probability matrix
for short random walks.

7.2 Time Complexity
This temporal random walk algorithm is divided into two parts, the
random walk simulation and the dendrogram cut. The temporal
random walk part runs in 𝑂 (𝑛𝑡𝑠𝑘) where 𝑛 is the number of nodes
in the graph, 𝑡 is the number of timesteps, 𝑠 is the length of the short
random walk and 𝑘 is the number of times the random walk pro-
cess is repeated. The dendrogram cut part involves the computation
of temporal modularity at every possible dendrogram cut, which
equals the number of nodes 𝑛. The modularity computation itself is
a summation over all pairs of timesteps and all pairs of nodes. The

dendrogram cut part runs in 𝑂 (𝑛3𝑡2). However, modularity can be
calculated individually within each cluster and then summed up,
thus reducing the number of calculations performed.

8 CONCLUSIONS
In this project, I have proposed a new method of temporal commu-
nity detection algorithm using short random walks. This method
is able to capture temporal community information and uses hier-
archical clustering to detect persistent communities in networks.
Experiments on a real world temporal network demonstrates that
this algorithm performs at least as well as popular static community
detection algorithms with potential of improved accuracy. However,
the temporal nature of this algorithm makes it slow to run which
poses a problem if used on large datasets. In addition, the random
nature of simulations might lead non-deterministic results. Further
work can be done on performing more experiments on datasets
with better community structures and extending theWalktrap algo-
rithm which produces unique results and finding a more efficient
way of computing temporal modularity.
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A ADDITIONAL INFORMATION ON
PRIMARY SCHOOL DATA

This dataset contains a temporal contact network between students
and teachers in 5 grades and 10 classes over the course of 2 school
days. The dataset is undirected, unweighted and was originally
collected by Stehlé et al. to study how infecious diseases spread
within a school setting. An overview of the dataset can be found in
Table 5 [29].

Table 5: Distribution of Primary School Participants

Class No. Participants (Day 1) No. Participants (Day 2)

1A 22 23
1B 25 25
2A 22 23
2B 25 26
3A 23 23
3B 21 21
4A 21 21
4B 22 22
5A 22 21
5B 23 23

Teachers 10 10

Total 242

Table 6: Summary of Primary School Student and Teacher
Interactions

No. Interactions

Average 1,039
Same class 91,265 (72.6%)
Different class 34,508 (27.4%)

Most interactions, 72.6%, are between individuals from the same
class, as shown in Table 6 with upper year students (4th and 5th
grade) more likely to interact with each other than with lower year
(1st to 3rd grade) students, and vice versa, as shown in Figure 2[29].
It is worth noting that though teachers are considered to be in their
own "class", they interact mostly with students of various classes
and rarely with each other.

Figure 3 [29] displays the distribution of the total amount of
time,𝑤𝑖 𝑗 , as well the duration of contacts. Stehlé et al. found that
most interactions between individuals are short, with an average
duration of 33 seconds. 88% of the contacts last less than one minute
while 0.2% of the contacts last more than 5 minutes.

Similarly, most cumulated contact durations between two indi-
viduals are short, but each student interacts with more than half of
their peers. 64% of the pairs of students interacted for less than 2
minutes on the same day, 9% interacted for more than 10 minutes
and 0.38% more than 1 hour. The average amount of time spent by

Figure 2: Contact matrix of students and teachers between
classes

Figure 3: Contact duration between primary school students
and teachers

two students in face-to-face proximity in one day is 207 seconds (3
min 27 s) for day 1, and 236 seconds (3 min 56 s) for day 2. This is
important as highly infectious diseases can be spread easily even if
the students only interacted for a short period of time.

The degree distribution of the primary school dataset does not
appear to follow a power law distribution as shown in Figure 4

B ADDITIONAL RESULTS ON THE PRIMARY
SCHOOL DATASET

In this section, results from the the experiments will be presented
along with a visualization of the optimal communities discovered
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Figure 4: Degree Distribution of primary school dataset

by each algorithm.

B.1 RandomWalk Temporal Clustering
After running the simulation and performing hierarchical cluster-
ing, the dendrogram shown in Figure ?? is formed. The cut of the
dendrogram is determined by computing the temporal modular-
ity defined in Equation 5 and finding the cut that results in the
maximal modularity in the graph. The temporal modularity value
for clusters formed at each cut of the dendrogram shown in Figure 5.

Figure 5: Modularity corresponding to number of communi-
ties

Figure 6 indicates the best partition consists of six distinct com-
munities.

Figure 7 illustrates the optimal community structure found by
the random walk clustering algorithm.

Figure 6: Enlarged portion of Figure 5 from one community
to thirty communities. A partition of 6 communities result
in the highest temporal modularity.

Figure 7: Visualization of random walk clustering results.
Random walk clustering found 6 clusters with a NMI score
of 0.8115 and ARI score of 0.5732.

B.2 Clauset-Newman-Moore Greedy
Modularity Maximization Algorithm

The Clauset-Newman-Moore Greedy Modularity Maximization Al-
gorithm is a hierarchical agglomeration algorithm for detecting
community structure in static graphs that begins with each node
in its own community and joins the pair of communities that most
increases modularity until no such pair exists.[5][8] Applying the
Greedy Modularity Maximization algorithm on the Primary School
dataset produces three distinct communities, a visual representa-
tion of the clusters found is shown in Figure 8.

B.3 Louvain Algorithm
The Louvain algorithm is a community detection algorithm on
static graphs. It consists of two phases: phase one where modular-
ity is optimized by allowing only local changes of communities;
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Figure 8: Visualization of Clauset-Newman-Moore greedy
modularity maximization clustering results. The greedy
modularitymaximization clustering algorithm found 3 clus-
ters with a NMI score of 0.4894 and ARI score of 0.1614.

phase two where the found communities are aggregated in order to
build a new network of communities. The process is then repeated
iteratively until no increase of modularity is possible.[3] A visual-
ization of the clusters found by the Louvain algorithm can be found

in Figure 9.

Figure 9: Visualization of Louvain clustering results. Lou-
vain algorithm found 6 clusters with a NMI score of 0.8115
and ARI score of 0.5732.
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